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A b s t r a c t - - T h e  nonlinear identification of a nominal model as well as the uncertainty bounds of a 
magnetic suspension system is developed. This system has a nonsymmetric dynamic behavior; it has 
an undershoot but not an overshoot. The proposed model structure is a cascade of a global linear 
fuzzy dynamic block followed by a piecewise linear function. This model structure allows a proper 
identification of the system dynamic and a tight description of the uncertainties. (~) 2004 Elsevier 
Ltd. All rights reserved. 

K e y w o r d s - - N o n l i n e a r  systems identification, Uncertain systems, Fuzzy logic, Piecewise linear 
functions. 

1. I N T R O D U C T I O N  

The identification of nonlinear systems from input output data is a very important subject in 

many different technological areas, like control system design. A nonlinear model can properly 
describe the dynamic behavior of the system over a large operating region. One of the main 
problems in nonlinear system identification is the evaluation of a proper model structure. Robust 
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control theory has motivated developments of new model structures to achieve tight uncertainty 
description. However, the complexity of the robust stability and performance analysis problem 
strongly depends on the uncertainty model. Considerable efforts have been carried out in this 

area, specially since the advent of neural networks and fuzzy logic techniques [1]. In the case of 

fading memory system, Wiener like models help to solve the trade-off between simplicity of the 
robust stability analysis and quality of the representation. The Wiener model is composed by a 
linear dynamic block based on a Laguerre basis transfer functions followed by an Hermite poly- 
nomial. From the original structure many other approaches have been developed using different 
linear dynamic representation [2], like Kautz series [3] and wavelet transfer functions [4,5], as well 
as different nonlinear approximation approaches like Neural Networks [6,7]. 

In this paper, the nonlinear nominal as well as the uncertainty model evaluation problem 
of a stabilized magnetic suspension system from input output experimental data is considered. 
The system exhibits a particular behavior; an undershoot when the reference signal is going 
down. Global linear fuzzy models have proved to be an effective tool to approximate the main 
dynamic response of the system [8]. A piecewise linear (PWL) function approximation technique 

is used [9] to closely describe the nonlinearities as well as the model uncertainty. The final model 

structure resembles a Wiener structure where the fuzzy model describe the dynamic and the 

PWL function the static gain. The PWL function approximation allows the evaluation of upper 
an lower bounds of the static nonlinear gain. These bounds may be used to describe the dynamic 
model uncertainty. One of the main advantages of this function approximation technique is the 
simplicity of the electronic VLSI implementation [9]. Then efficient model implementations may 

be achieved for a large class of applications. 
The paper is organized as follows. Section 2 describes the magnetic suspension system. Sec- 

tion 3 presents the model structure used. In Section 4, the modelling results are discussed. 
Finally, in Section 5, some concluding remarks are presented. 

2. MAGNETIC SUSPENSION SYSTEM 

The magnetic suspension system consists of an electromagnet, a coil and a distance sensor. 

Figure 1 shows the basic principle where URL and i are the voltages and the current of the 
electromagnet with resistance R and inductance L, c is an unknown parameter, m is the mass of 
the coil and l is the distance between the electromagnet and the coil. From the second Newton 

law we can write d2 l 

m g -  F m =  m - ~ .  (1) 

The magnetic force depends on the current i, the distance l, and the parameter c 

i s 
Fm = c ~ .  (2) 

The electric dynamic of the system is modeled by the following equation: 

di 
URL(t) -~ L ~ + Ri .  (3) 

The sensor and the actuator can  be modeled with static functions where equation (4) is the 
model of the sensor and equation (5) is the model of the actuator 

y ----~ / ( s ens  / "~- Ysens,  Ksens = - 4  ~mm ' Usen~ = 10IV]. (4) 

u = K~ctUnL + Uact, /(act = 2, Uact = -10[V]. (5) 

By using equations (1)-(3), the nonlinear unstable differential equation is obtained 

g - - ~  ] dt 2c d~ -5+  1 g -- dt2 J -- URL c g -- dt2 ] = 0" (6) c c 
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Figure 1. Closed loop magnetic suspension system. 
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Figure 2. Dynamic response of the closed loop system: Reference (w): dotted, Out- 
put (y): solid. 

I t  can  be s t ab i l i zed  wi th  t he  l inear  lead  c o m p e n s a t o r  wi th  t rans fe r  func t ion  

(s + 40) 
Gee(s) = 4.5 (s + 4 o 0 )  (7) 



1078 O. AGAMENNONI et al. 

Using a sampling time of 2[ms], the discrete controller is as follows 

God (z -1) = 4.5 (1 -- 0.09449z- 1) 
(1 - 0.4493z -1)  " 

(s) 

Also the feedforward compensation of gravity of 2Iv] was applied. Figure 1 shows the compen- 
sated system where w is the reference signal. 

The lead compensator assures stability in the whole operating range. Figure 2 shows the 
dynamic behavior of the compensated system. It can be appreciated a considerable dynamic 
difference in the response when the reference signal is moving up or down. The system exhibits 
an undershoot when the reference signal is going down. 

In the next sections, a nonlinear model of the closed loop system from w to y will be identified. 

3.  M O D E L  S T R U C T U R E  

The proposed model structure used in this paper consists on a fuzzy global linear dynamic 
model (see Appendix A) followed by a piecewise linear (PWL) static function (see Appendix B). 
In some way, this model structure can be considered as a generalization of a Wiener model. 
The particular linear dynamic and nonlinear static technique used in a Wiener like structure 
is dictated by the characteristics of the specific system to be modeled. If the system exhibits a 
considerably oscillatory behavior, Kautz series is preferable over Laguerre series to cope the linear 
dynamic. In the present case, the magnetic system exhibits a dynamic behavior that cannot be 
properly approximated with any linear technique. The fuzzy global linear model can properly 
describe the unusual dynamic behaviors like the undershoot of the magnetic system described 
in the previous section. Then, the fuzzy model will be evaluated to describe the main dynamic 
behavior and the PWL function will approximate the static mapping between the output of the 
fuzzy model and the magnetic system output as well as the lower and upper bounds of this static 
gain. Different Wiener model identification approaches can be found in the relevant literature. 
A general classification of these approaches is the following. 

• The N-L Approach. First, the output static nonlinearity is determined using steady-state 
data, then the dynamic linear block is identified, being the intermediate signal generated 
from the output signal using inverse nonlinearity mapping [10]. 

• The L-N Approach. First, the linear block is identified using a correlation technique; 
after that, the intermediate signal is generated from the input signal and finally the static 
nonlinearity is estimated [11]. 

• The Simultaneous Approach. Parameters of the linear block and the static nonlinearity 
are estimated at the same time. For example, [12,13] describe a prediction error based on 
simultaneous Wiener model identification procedure. 

Even though, the model structure used in this paper is not a strict Wiener, the second iden- 
tification approach is used because is straightforward and ensures an accurate description of the 
static nonlinearity. 

4.  M O D E L L I N G  R E S U L T S  

A PRBS input sequence is used for the identification of the fuzzy dynamic block using the 
global linear approach described in Appendix A. The TS model used has antecedent fuzzy sets A1 
and A2 and are shown in Figure 3. They have been chosen in accordance with different process 
dynamic when process output is increasing or decreasing. Different dynamic can be appreciated 
from a series of step response shown in Figure 2. 
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The identified TS model with the sampling t ime of 2[ms] is 

R 1 : if yp(k) - yp(k - 10) is A1, then  

yp(k + 1) = 1.3449yp(k) + 0.2288yp(k - 1) - 0.5822yp(k - 2) 

+ 0.0188w(k - 2) + 0.0199 

R 2 : if yp(k) - yp(k - 10) is A2, then  

yp(k + 1) -- 1.3174yp(k) + 0.1495yp(k - 1) - 0.4755yp(k - 2) 

+ 0.0189w(k - 2) + 0.0219 

The response of this fuzzy model compared with the system output may be appreciated in 
Figure 4. 

The toolbox [14] was used to identify the static PWL function. This toolbox allows not only to 
obtain a nominal model but also the uncertainty bands enclosing all the available data, as shown 
in Appendix B. In this way, a PWL description of the upper and lower bounds )~l and Au can be 
evaluated. A complete description of the robust identification can be found in [15]. These bounds 
may also be used as indicators of the model quality. Different dynamic model alternatives may 
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be compared with these bounds. The dynamic model for which the narrow bounds are achieved 
minimizes the unmodeled dynamics. These bounds of the static nonlinear gain may also be used 
to evaluate the bounds of the dynamic response. In this paper, two alternative mappings were 
studied. First, a R 1 --* ]~1 mapping was evaluated from the actual output of the fuzzy model to 
the actual system output and second a ]~2 __+ ]~1 mapping from the actual and a delayed output 
of the fuzzy model to the actual output of the system. Figure 5 shows this model structure. 

Figure 6 shows the upper and lower bounds of the R 2 ~ •1 PWL mapping. 

To evaluate the performance of the uncertainty model, the mean of the dynamic uncertainty 
band over a validation set was computed. Table 1 summarizes the results concerning to the 
dynamic uncertainty using both mappings. It is clear that the second alternative considerably 
reduces the uncertainty bands. 

.PWL compared to the system output y. Figure 7 shows the dynamic behavior of the model yp 
In order to have a closer vision of the results, Figure 8 presents a zoom of the previous one. In 
these figures, the dynamic bands obtained from the robust approximation bounds of the static 
gain showed in Figure 6, may also be appreciated. Is clear that the dynamic evolution of the 
system is always inside these dynamic bounds. 

A validation study was performed with data that has not been used in the approximation. 
Figure 9 shows a representative result. Several validation tests were performed and only in some 
very short periods of time a negligible drift outside these bounds could be appreciated. 

Table 1. 

Mapping Input Output Mean of the Dynamic Uncertainty Band 

N1 _+ N1 yp(k) y(k) 2.2 
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5. C O N C L U S I O N  

A fuzzy PWL structure for a nominal as well as uncertain model evaluation from input-output 
experimental data of a magnetic suspension system was presented. The system exhibits a par- 
ticular behavior; it has an undershoot when the reference signal is going down. The model 
resembles a Wiener structure were a fuzzy global linear approach is used to describe the main 
dynamic characteristics and PWL functions describes the static nonlinearity and its uncertainty. 
The results show the viability of the proposed modelling technique. Several validation tests were 
performed and only in some very short periods of time a negligible drift outside these bounds 
could be appreciated. It is important to note that the PWL functions used have a simple VLSI 
electronic implementation. Then, it is possible to develop a real time implementation of this 
model structure for a large class of systems. 

A P P E N D I X  A 

F U Z Z Y  I D E N T I F I C A T I O N  

Fuzzy models are, like neural networks, universal approximators. Originally, fuzzy models 
represent a static nonlinear function of input and output variables. The dynamical response 
is obtained with feeding in tap-delayed input variables and feeding back tap-delayed output 
variables. The most widely used type of fuzzy model in the Takagi-Sugeno (TS) [16] that can be 
written as follows 

RJ :  i fx l  is A~ and x g  is AJN, then y = f J  ( x l , . . . , X N ) ,  (9) 

where xi are inputs, A{ are subsets of the input space, y is the output and f f  is a function, 
generally nonlinear. In the present paper, a minor modification of the TS rule was made: the 
antecedent variable is not part of the regressor. For the third-order model, i th rule can be written 
as 

R i :  i f a v i s A  i , then 
(10) 

yp(k  + 1) = aliYp(k)  + a2iyp(k - 1) + a3iyp(k - 2) + biw(k  - D)  + ri, 

where yp(k  + 1) is the output and yp(k) ,  yp(k  - 1), yp(k  - 2), w ( k  - D)  are the inputs of the 
fuzzy model. D stands for the dead time expressed by the number of samples, A i are antecedent 
fuzzy sets and av is the antecedent variable, in our case av = yp(k)  - yp(k  - 10). 

Using Fuzzy mean defuzzification method, the output is expressed by the following equation: 

K 

yp(k  + 1) = E f l i ( k )  (aziyp(k) + a2iyp(k - 1) + a3iyp(k - 2) + biw(k  - D)  + ri),  
i=1 

(11) 

where K stands for the number of rules and fli(k) is the normalized degree of fulfillment of i th 
rule at k th step. For the purpose of identification, equation (11) can be written with K equation 
as follows [17] 

j31(k)yp(k + 1) = t31(k)azlyp(k) +/31(k)a21yp(k - 1) 

+ f l l (k)a3zYp(k  - 2) + f l l ( k ) b l w ( k  - D)  + f l l ( k ) r l ,  

j3i(k)yp(k + 1) = ~i (k )az iyp(k)  + ~i(k)a2iYp(k  - 1) 

+/3i(k)a3~yp(k - 2) + ~ i ( k ) b i w ( k  - D)  + fli(k)r~, 
(12) 

13K(k)yp(k + 1) = j3K(k)a lKYp(k  ) q- ~K(k )a2KYp(k  -- 1) 

+ 13K(k)a3KYp(k -- 2) -b ~ K ( k ) b K w ( k  - D)  q- l~K(k)rK,  
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To evaluate parameters ali, a2~, a3i, b~, and r~ of the ith rule, the regression matrix ~ i  and 
the output data vector Y~ should be obtained as presented in the following equations 

¢~(k)=[f l i (k)yp(k)  f l~(k)yp(k-1)  f l~(k)yp(k-2)  f l i ( k ) w ( k - D )  fl~(k)], (13) 

¢~(D) 

• , = ¢ , (k)  , (14) 

~i(N - 1) 

" f l d D ) y p ( D  + 1)" 

Y~ = Z,(k)y~(k + 1) (15) 

./3~(N - 1)yp(N). 

The vector of parameters of i th rule, 0i, is obtained by using the least square method 

where 

Oi ( IX/: ~I1 i) - 1  T i = ~ i  Yp, (16) 

Oi=[al~ a2~ a3i bi ri] .  (17) 

The steps from equations (13)-(16) should be repeated for all rules. Vectors 0~ can be joined 
into a matrix 

0 =[0 1  02 •.• OK], (18) 
where ith column represents the parameter vector of i th rule• The fuzzy model of equation 11 
can be written in the following form, also called global linear model: 

y v ( k + l ) = g l y v ( k )  + 52yv(k - 

where the parameters are 

al(k)= 

1) + a3yp(k - 2) + g~ (k  - D)  + e(k) ,  

K 

i = 1  

K 

(19) 

Z~(k)o3, ,  (20) 

~ ( k )  = 
i=1 
K 

a3(k)=~ 
/=1 
K 

i=1 
K 

i = l  

A P P E N D I X  B 

P W L  F U N C T I O N  A P P R O X I M A T I O N  

In [9] a representation for the family of all continuous PWL mappings defined over a simplicial 
partition of a domain in R mo was proposed• This representation allows to uniformly approximate 
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any Lipschitz continuous function defined on a compact domain. Juli£n [18] formulated the 
canonical expression for all the family of the PWL continuous functions defined over a simplicial 
partition of the domain 

D = {(Vl,.- . ,Vmo): 0 < v~ < miS, i E {1 , . . . , n}}  C ~mo, 

where 5 is the grid size and m~ E Z+. This type of partition divides the domain D in simplices ~(i), 
i 1 , 2 , . . . , q  such that  D q ~,(i). = = U~=i The corresponding set of vertices for these simplices is 
called V (i). For simplicity, let us suppose that  the domain D belongs to ]~2. If one function 
value is associated to each vertex, as illustrated by Figure 10, then it is possible to define a PWL 
function with the following characteristics. 

1. The function values assigned to each vertex define a unique (and local) linear affine func- 
tion for each simplex. 

2. The local linear expressions defines a PWL continuous function because they are contin- 
uous on the boundaries of the partition. 

The extension of this idea to a too-dimensional domain lead to define simplices of mo + 1 
vertices. 

Figure 10. PWL function in R2. 

Let PWLH[D] the set of all the PWL continuous mappings with domain D partitioned with a 
given boundary configuration H. A basis of PWLH [D] was constructed by defining each element 
of the basis as a function of k-nesting absolute value functions. The elements of this basis can 
be expressed in vector form as 

[AOT A1T : ] T  A = , , A "~ 

ordered according to its nesting level (n.1.), where A i is the vector containing the functions 
having n.1. = i. Then any function h E PWLH [D] can be written as 

h(v) = ETA(v), 

where E = [ETo,E[,. . .  ,EmTo] T, and every vector Ei is a parameter vector associated to the 
vector function A i. 

Robust Approximation 

Let us assume that  the measure to be approximated has a given level of uncertainty in the 
form 

= {h :  D H R i :  h(v) -- hg(v) + A(v)},  

where hlv is a nominal function and A satisfies sUPpeD IIA(v)H _< K.  
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In addition, let us consider that  a set F = {hi, h2, h 3 , . . . ,  hm} of m measured values (members 
of ~) over a set of points X = {v l ,v2 ,va , . . . ,v ,~}  is available (i.e., hi = h(vi), with h • ~} 
and vi • X c D). 

We search an "upper" function h~ and a "lower" function hi both  belonging to PWLH[D], 
satisfying 

hz(,i) _< h( i) _< • D, 

to characterize the uncertainty function, in the sense that  

h(vi) = ahl(v~) + (1 - a)h~(vi),  

V vi • X, h • ~, where 0 < a < 1. In addition, it is also desirable that the band defined by these 
two functions be as narrow as possible. This is equivalent to find two functions h~ and ht that 
solve the following optimization problems. 

PROBLEM 1. 

min ( m a x  {[hi - hl(vi)l})  (21) 
h~PWL/¢[D] \viEX 

s.t., 

PROBLEM 2. 

s.t., 

hi - hl(vi) >__ O, V vi • X.  

min (max  {Ihi - hu(vi)l}) 
h~ EPWL/¢ [D] k v~6X 

(22) 

h~(vi) - hi >_ O, Vvl • X. 

As h~ and hz • PWLH[D] then they can be written as hi(v) -- ETA(v ) and h~(v) = E~A(v).  
It can be proved that  the solution to these problems can be found as solutions of two linear 

programming problems, as stated in the following lemma. 

LEMMA 1. Let  X,  F, H, and D as described above. Problems (21) and (22) can be stated as 
the linear programming problems 

(1) min)~z subject to 

-c~A(vi) - ~l < -h i ,  Vvi • X, 

-c~A(vi) >_ - h i ,  V vi • X ,  

~ >_0; 

(2) min Au subject to 

cuTA(vi) - )~u <_ h~, Vvi e X, 

c~A(vi) >_ h~, V vi e X,  

Au >_ 0; 

on the parameters  Ez, Eu, Al, and A~. 
PROOF. See [9]. 
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